?/TD> |
Microsoft DirectX 9.0 |
Performs a Catmull-Rom interpolation, using the specified 4-D vectors.
Syntax
D3DXVECTOR4 *WINAPI D3DXVec4CatmullRom(
D3DXVECTOR4 *pOut, CONST D3DXVECTOR4 *pV1, CONST D3DXVECTOR4 *pV2, CONST D3DXVECTOR4 *pV3, CONST D3DXVECTOR4 *pV4, FLOAT s );
Parameters
- pOut
- [in, out] Pointer to the D3DXVECTOR4? structure that is the result of the operation.
- pV1
- [in] Pointer to a source D3DXVECTOR4 structure, a position vector.
- pV2
- [in] Pointer to a source D3DXVECTOR4 structure, a position vector.
- pV3
- [in] Pointer to a source D3DXVECTOR4 structure, a position vector.
- pV4
- [in] Pointer to a source D3DXVECTOR4 structure, a position vector.
- s
- [in] Weighting factor. See Remarks.
Return Value
Pointer to a D3DXVECTOR4 structure that is the result of the Catmull-Rom interpolation.
Remarks
Given 4 points (p1, p2, p3, p4), find a function Q(s) such that:
Q(s) is a cubic function. Q(s) interpolates between p2 and p3 as s ranges from 0 to 1. Q(s) is parallel to the line joining p1 to p3 when s is 0. Q(s) is parallel to the line joining p2 to p4 when s is 1.The Catmull-Rom spline can be derived from the Hermite spline by setting:
v1 = p2 v2 = p3 t1 = (p3 - p1) / 2 t2 = (p4 - p2) / 2where: v1 is the contents of pV1, v2 in the contents of pV2, p3 is the contents of pV3, and p4 is the contents of pV4.
Using the Hermite spline equation:
Q(s) = (2s3 - 3s2 + 1)v1 + (-2s3 + 3s2)v2 + (s3 - 2s2 + s)t1 + (s3 - s2)t2and substituting for v1, v2, t1, t2 yields:
Q(s) = (2s3 - 3s2 + 1)p2 + (-2s3 + 3s2)p3 + (s3 - 2s2 + s) (p3 - p1)/2 + (s3 - s2)(p4 - p2)/2This can be rearranging, as:
Q(s) = [(-s3 + 2s2 - s)p1 + (3s3 - 5s2 + 2)p2 + (-3s3 + 4s2 + s)p3 + (s3 - s2)p4] / 2
Function Information
Header d3dx9math.h Import library d3dx9.lib Minimum operating systems Windows 98
See Also
D3DXVec2CatmullRom, D3DXVec3CatmullRom